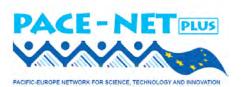
PACE-NET Plus Platform of bi-regional policy dialogue Brussels, 23-24 June 2016

Observation systems of climate change in South Pacific



Bernard Pelletier, IRD-GOPS

Workshop on observation systems of climate change and its impacts in the South Pacific, for a sustainable management of resources and adaptation

on 11-12 June 2015, IRD Centre Nouméa (New Caledonia)

Workshop tocused on three areas of research:

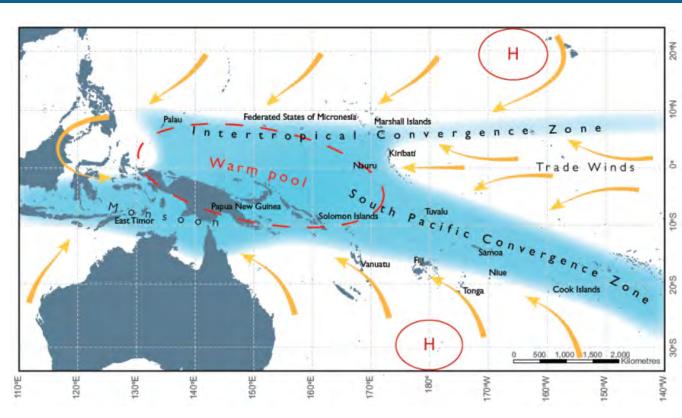
- CC and variability, oceanography, ocean atmosphere interaction,
- impacts of CC on marine and terrestrial ecosystems & biodiversity
- impacts of CC on societies and communities

Why this workshop?


- Specificities of the region and its relevance for major issues (vulnerability of PICTs, health, global climate, CO2 sequestration, loss of biodiversity,...)
- Data and long-term observations are crucial for research (analyse, modelise and predict) and provide expertises to decision makers

1) Specificities of the region / Importance of ocean for Pacific Islands livelihood

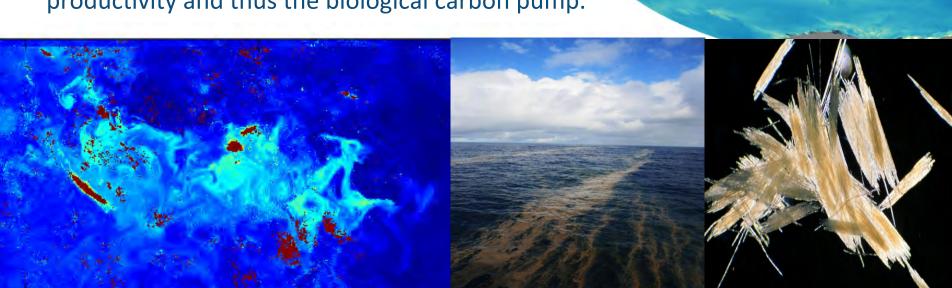
Large EEZs, coastal and offshore resources



1) Specificities of the region /Relevance of Pacific Ocean for climate study – Major driver of global climate – ENSO...

Home of major environmental phenomena related to ocean-atmosphere dynamics. The SPCZ, one of the most powerful convective engines on our planet, influences climate on interannual (ENSO) to multi-decadal scale.

with consequent effects on population, infrastructure, food, biodiversity.



1) Specificities of the region / Relevance of SW Pacific ocean for CO2 sequestration - N2 primed carbon pump

Ocean - CO2 sink – but 80% oceanic desert

 effectiveness of biological carbon pump depends on availability of N

Spectacular blooms of the PFT N₂-fixers
 Trichodesmium on SW Pac – Diazotroph- hotspot
 to fix N₂, to possibly increase the plankton
 productivity and thus the biological carbon pump.

1) Specificities of the region / Hotspots of biodiversity and at the heart of the ongoing extinction crisis

- 10 hotspots are insular among the 35 recognised
- 4 are in the Pacific region (NC=the smallest in size with very high level of endemism, 3000 species of flowering plants/1000 Hawaii)

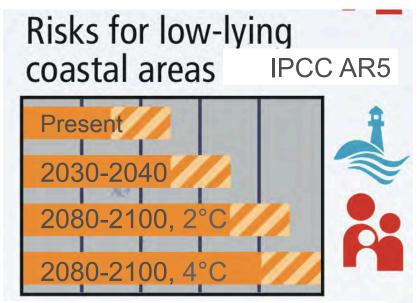
Insular ecoystems

180000 isl., 5% land surface,
20-25% biodiversity

linked to invasive species, 1000 bird species in Pacific, 70% of vegetation in NC)

40-50 % critically endangered species

1) Specificities of the region / High diversity of culture, language and traditional knowledge



1) Specificities of the region/ highly-vulnerable countries to climate change

- PICTs Highly vulnerable and already impacted by CC due to physical (location, geology) and socio economic (smallness, isolation) factors.
- This concerns the low-lying islands, and nations that are entirely atolls (Tuvalu, Kiribati, Tokelau and Marshall Islands), but also hight islands.

2) Workshop organisation and objectives

- * 55 participants from Fiji, PNG, Samoa, NZ, Aus., Hawaii, France, FP, NC
- * 2 half-days in plenary session and 2 half-days in 3 parallel sessions, including both broad-ranging and focused presentations and time slots for discussions on the following questions:
- •What can be observed, how and when? What types of data, tools, products are needed?, What impacts will be addressed?,
- •How data will be used and model integration will be achieved?
- •What partnerships are needed to support and exploit these observation systems?
- * Objectives: identify priorities and recommend actions

3) Recommendations session 1: CC and variability, ocean ography, ocean atmosphere interaction

- Sustain, support, and further develop climate data-base
- Expand and maintain National Climate Monitoring and Hydrological Observing Networks
- Rescue, digitise, safeguard, homogenise and analyse historical data to document past climate variability and change. Document extreme events and their impacts.
- Develop monitoring (wave buoys, pressure sensors) for coastal inundation, forecasting and coral reef conditions (T, pH).
- Open-ocean. Develop monitoring for ocean acidification and carbon cycle. Establish long-term mooring time series. Sustain and reinforce measurements from ships of opportunity

3) Recommendations session 2 - impacts of CC on ecosystems and biodiversity

- Urgent need to establish long-term monitoring of ecological sites & permanent plots network on:
 - low lying coral reef islands (sentinel islands)
 - selected ecosystems on elevated islands with environmental gradients and landscape/seascape transition (sentinel ecosystems)
- Long-time series of remote sensing (collaboration with ESA)

3) Recommendations session 3 - impacts of CC on societies and communities

- Identify and establish better access to historical data including anthropological monographs and case studies from other disciplines
- Identify key indicators (qualitative/quantitative) and links to existing quantitative data sources (censuses, economic data banks)
- Select long-term observation sites
- Establish links to natural science data in existing sites
- Identify potential frameworks or platforms to encourage partnership and build capacity to monitor and analyse the social consequences of climate change in the region (O2C3)

3) General recommendations

- Database. Promote open and accessible databases across the region. Improve partnership to overcome policy difficulties to access data.
- Modeling. Promote dialogue between data providers and modeling people. Downscaling at the island scale. Rreinforce computational resources.
- Increase scientific **partnership** within Pacific, across the Pacific rim and with Europe. Facilitate interaction between social and natural scientists (newsletter, annual workshop...).
- Capacity building. Sustain dedicated human resources. Increase capacity
 of islanders to take observations (deployment and maintenance of
 instruments) and make use of the data.

Observation systems of climate change in South Pacific

Thank you for your attention

Types of data, tools and products needed – session 1

Needs (Types): 1- Climate data

2- coastal and offshore data.

3-Rescue of historical data

Needs (Variables): pCO2, pH, carbon cycle, temperature, salinity, nutrients, rainfall, surface heat flux, waves, sea-level

Needs (Vectors): 1-Coastal monitoring sites.

2-Offshore sites (buoys, floats and gliders).

3-Ships of opportun. (commercial, research, fisheries or navy)

Needs: Open-access to data

Model

Types of data and tools needed – session 2

- Visibility and accessibility of the data
- Importance of standardisation of metadata to track data for future analysis
- Set of heterogeneous data of biodiversity, good proxies rare,
- Need for a landscape/seascape continuum approach
- Abiotic data: physical and chemical environment (CO2, pH, T°, UV, rainfall...)
- Biodiversity and biological data for Ecological community and species distribution changes, Ecological functions, Habitat characteristics, Ecosystem services
- Experimental design: model systems (mesocosms, sentinel islands) to define proxy of climate change impacts

Types of data and tools needed – session 3

Baselines ? Processes of change, Indicators of change

Material human security

- Loss of settlement security
 - Household relocation
 - Community relocation
 - Squatter settlements
 - Displacement
- Loss of livelihood security
 - Food
 - Cash incomes
 - Poverty
- Loss of habitat security
 - Health
 - Disaster vulnerability/resilience

Non-material security

- Social change
 - Village structures
 - **♦** Kinship
 - Urbanisation
- Cultural change
 - Land
 - Language
- Psychological effects
 - Affect and emotions

